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Abstract

In this paper, we give a status report for an archi-
tecture that can be used to view or analyse the out-
put of scientific applications within secure distributed
environments. The model satisfies essential criteria
for such an environment, such as traversing firewall
issues, by constructing a one-way protocol for com-
munication to clients wishing to view the progress of
such an application. Our prototype uses the Cactus
thorn architecture to implement the protocol, but we
have already developed a stand alone version for use
with legacy applications. The protocol uses Web ser-
vice standards for implementation and deploys these
within a dynamic environment enabling spontaneous
run-time connectivity with the legacy codes running on
the distributed resource. We demonstrate this capabil-
ity in this paper by showing how Triana can be used to
view the output of a Cactus simulation of a 3D scalar
field produced by two orbiting sources.

1 Introduction

Simulating physical phenomena on computers in-
volves increasingly complex workflows, involving a
plethora of tools; most scientists and engineers per-
form each step of these workflows manually, involving
ad-hoc procedures and much labour. In recent years
there has been a move to automate this with environ-
ments in which the person running the simulation can
connect the tools used for stages of the workflow to-
gether, these can be graphical in nature, such as those
based upon the Common Component Architecture [1],
e.g. SCIRun [2], or lower level, such as Condor [3]; a
brief survey of some such tools appears on the Scien-
tific Workflows Survey website [4]. The growth of the
Grid has brought new challenges and new opportuni-
ties for the development of such tools.

In parallel, much of the underlying Grid middle-
ware has advanced from an experimental or prototype
state to become mature, stable and widely deployed

e.g. [5, 6, 7]. These new platforms create a homo-
geneous working environment across a vast range of
heterogeneous resources and are based on open mid-
dleware projects, such as Globus [8] and the VDT [9].
These evolving environments enable a vast distributed
resource that can be utilised by a wide range of scien-
tific applications including high-throughput cases that
can be executed repeatedly across the resources by
exploring different starting conditions or parameter
sweeps. One example of such an application is Cactus
[10], which has a generic architecture that can be used
to develop a wide range of scientific applications.

In this paper, we present a protocol which we have
developed which enables the distributed notification
and uploading of files created by an application dur-
ing the iterative time steps of a simulation; this allows
existing simulation codes to be easily integrated into
workflow tools with little or no modification. A proto-
type of this protocol has been demonstrated recently
in SC2004, where we showed the visualisation of a 3D
scalar field produced by two orbiting sources. This was
accomplished by using this protocol to connect two in-
dependently developed frameworks - Cactus, running
on an HPC resource, and Triana [11] running on a
users workstation. Triana received notifications of the
files created by Cactus and then selected the ones it
wished to visualise. The result was that the user could
see real-time JPEG images from the remote applica-
tion, representing the 3 dimensions of the scalar field,
as the simulation progressed. The specific scenario we
aimed to address is illustrated in Figure 1. The steps
are as follows:

Startup: the Cactus application is launched on the dis-
tributed resource. This could be accomplished in a number
of ways e.g. using GRAM [12], condor [3], more rudimen-
tary tools, such as SSH, or higher level tools which select
from the available options, such as the GAT [13].

Web Service Initialisation: Triana, wishing to receive files
from Cactus initialises and dynamically launches a Web
service, using WSPeer[14], to receive file notification and
the incoming data from the application.

Discovery: Cactus discovers the address (endpoint) of the
web service which wishes to visualise or analyse its out-
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Figure 1: The architecture of the application monitoring subsystem employed within our workflow.

put and tries to connect. This is achieved through spec-
ified Unicast addresses at present but could be extended
to utilise some kind of caching e.g. UDDI, or similar.

Notification: When Cactus outputs files it uses the protocol
to notify the web service of the details, e.g. names and
MIME types, of the files that are being created.

Selection: Triana decides which files it is interested in. Mean-
while, the Cactus application invokes the notification
method on the web service. The web service returns the
list of files it wishes to receive.

File Communication: Cactus then uploads the selected files
and continues with the next time step of the simulation

Iterate: Cactus returns to the selection step upon completion
of the next time step.

Figure 1 shows this scenario in a more generic
sense. Here, we show how Cactus and Triana use
of this protocol. Other client examples could include
portal infrastructures or other visualisation applica-
tions and other Grid side application could include
any legacy application that can run on a distributed
resource. Since applications communicate through
standard ASCII/binary files, there are no applica-
tion requirements, other than that they generate some
kind of files. Our prototype however, implements this
framework within the Cactus application directly, al-
though we have developed an independent monitoring
tool, which exhibits the same characteristics.

The rest of the paper is organised as follows. First,
the endpoint applications are briefly described; that

is, Triana and Cactus. These technologies are fed into
our scenario in section 4 by outlining the user perspec-
tive. We then describe our operating environment and
address the indigenous firewall and NAT issues. We
finally give a status report and outline future work
on this project. We do not address the full life cy-
cle of the workflow, such as how the Triana network
and the Cactus simulation are instantiated, although
such deployment issues are a crucial part of any grid
infrastructure, they do not have a direct bearing on
the protocol we discuss; one of the strengths of this
protocol is that it allows two independently deployed
instances of these frameworks to be used collabora-
tively, requiring no inter-dependence.

2 Triana

Triana is a graphical Problem Solving Environment
(PSE) for composing scientific applications. Applica-
tions within Triana are created by dragging program-
ming components, called tools, from the toolbox onto
a workspace, and then drawing cables between these
components to create a workflow. The original tools
used within Triana were Java components run on the
local machine, and a large suite of Java tools exist in
a range of domains including signal, image and text
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processing. The signal processing tools are the most
advanced as Triana was initially developed for data
analysis within the GEO600 project [15].

Triana has been extended for use as a Grid Com-
puting Environment (GCE), using the dynamic dis-
covery and choreography remote services, such as Web
Services, to extend its range of functionality. A ser-
vice discovery interface allows remote service instances
to be discovered through querying a directory service,
such as UDDI, and the imported into the Triana tool-
box. These remote components can be included into
workflow alongside Java components, with the Java
components generally being used to provide the input
to and visualize the output from the remote services.
A pluggable architecture allows additional component
types and discovery mechanisms to be added easily.

Triana is also a test application for the GridLab
project[16] and supports Grid job submission of legacy
codes using the GAT [13]. The adaptor based archi-
tecture of the GAT allows different resource allocation
managers, such as GRAM and GRMS, to be plugged
into Triana. Visual handling of Grid data resources
using the GAT is currently being developed within
Triana, as are novel techniques for monitoring remote
applications (such as the approach outlined in this pa-
per). The aim is to allow users to interact with services
running in a Grid environment as seamlessly as if they
were running within Triana. Triana is an open source
project hosted at Cardiff University [11].

Triana builds upon numerous other workflow tech-
nologies — e.g. Triana can networks can be instanti-
ated from BPEL workflow documents, and Triana can
export such documents.

3 Cactus

The Cactus Framework [17, 18] is an open source,
modular, highly portable, programming environment
for collaborative HPC computing. Cactus has a
generic parallel computational toolkit with modules
providing e.g. parallel drivers, coordinates, bound-
ary conditions, elliptic solvers, interpolators, reduc-
tion operators, and efficient I/O in different data for-
mats. Generic interfaces are used, (e.g. an abstract
elliptic solver API) making it possible to develop im-
proved modules which are immediately available to the
user community. Cactus is used by numerous applica-
tion communities internationally, including Numerical
Relativity e.g. [19, 20], Climate Modelling [21], Astro-
physics [22], Biological Computing [23] and Chemical
Engineering [24]. It is a driving framework for a num-
ber of computing infrastructure projects, particularly

in Grid Computing, e.g. GrADS [25], GridLab [26],
GriKSL [27], and the ASC [22, 28].

Cactus is distributed with a structured-mesh uni-
grid MPI parallel driver (PUGH). Other drivers in-
clude Carpet [29, 30] (MPI, adaptive mesh refinement
(AMR)), and PAGH (MPI/GrACE [31], AMR). Cac-
tus has many features for Grid computing and dy-
namic scenarios: checkpoint/restart; parameter steer-
ing; portability; HTTP interface; output in numerous
formats, both binary, e.g. HDF5, and ASCII based,
e.g. for use by GNUPlot; and performance monitor-
ing. GridLab is developing modules to integrate Cac-
tus with its Grid Application Toolkit [13, 32], provid-
ing any Cactus simulation easy access to a multitude
of capabilities, such as job migration or spawning and
data replication.

4 Real-Time Visualisation or Analysis
of Cactus Simulations within Triana
workflows

Within Cactus, users typically want to view or anal-
ysis certain files, which can be used to monitor the
progress of the application or derive scientific results.
Cactus can output data in many formats, such as HDF
5 files, JPEGs, and ASCII formats suitable for visu-
alising with common tools such as X-Graph or GNU-
Plot. A user would typically want the flexibility of be-
ing able to choose, at run time, the files he/she wishes
to view or analyse in an interactive fashion. For exam-
ple, the user may notice from the JPEG images that a
simulation of system consisting of two orbiting sources
is showing the sources coalescing; this user may then
wish to verify these findings by retrieving the detailed
simulation data and passing this to other analysis tools
or even by converting the output to an audio format
and listening to the acoustic waveform directly. Our
protocol, therefore, supports the dynamic notification
necessary for such interactions. When a file is cre-
ated, the web service deployed within a Triana unit is
notified, and at each time step, the web service is con-
tacted and can choose to receive any of the files that
are available. By default the application only sends
differences in text files since the last time the web ser-
vice received part of the file, thus reducing bandwidth;
binary files are transferred in entirety. If something
interesting happens, the web service can select and
receive a different set of files in the next iteration.

This is aided by the use of the Triana solving en-
vironment, which allows components to be dynami-
cally added/removed as the application is running.
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Figure 2: The resulting visualization from a Cactus simulation of the evolutions of a 3D scalar field.

Within Triana, a unit was created to host the Web
service representing the underlying protocol. This
is shown in Figure 2. The unit upon initialisation
uses WSPeer [14] to dynamically create and deploy
the Web service within the Axis environment and cre-
ate the necessary WSDL file representing the methods
within the protocol. The actual protocol is quite sim-
ple. It involves a notification and selection procedure
but it is carefully designed so that it is completely ap-
plication (i.e. Cactus) driven. This ensures that we
do not run into firewall issues (see section 5).

In our initial development, Triana and the Cac-
tus application are deployed and instantiated indepen-
dently, which is a useful model for occasional monitor-
ing of an application’s progress, as it allows a user to
make a later decision to use Triana to monitor the out-
put. In the full usage scenario we envisage, however,
a Triana unit would also be used to deploy Cactus on
a remote resource on demand, thus allowing Triana to
manage the full life-cycle of the workflow, as is done
in other workflow management systems.

In this current stage of deployment, we are using
one Cactus Triana unit per Cactus instance running
on the Grid. This approach is not scalable in the
visual sense i.e. imagine trying to visualize several

thousand Triana units, nor in the networking sense
i.e. having thousands of local instances of the same
Web service would be impractical for hosting envi-
ronments. To address these issues, we are currently
planning on building a scalable Cactus unit that al-
lows many instances to be mapped internally within
one Web service instance. We imagine that this would
build around the Triana dynamic scripting or looping
implementation (to hide the visual complexity) and
then such instances mapped using proxies to a Cac-
tus Triana unit instance for that script or loop. This
would allow the connection of possibly hundreds of
instances.

If more instances are needed then we can use the
Triana distributed mechanisms [33] to segregate the
workflow and run it across several Triana GAP ser-
vices across the Grid, allowing potentially many thou-
sands of instances. However, the algorithmic problem
of how these results are analysed would be applica-
tion specific. Within one scenario involving Cactus, we
imagine that Triana would be monitoring the output
of its results to see if something interesting had hap-
pened (i.e. the apparent horizon of a black hole sim-
ulation), then Triana would invoke a separate work-
flow to farm off many independent Cactus simulations
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to investigate this phenomenon more closely and then
analyse the results upon completion. The user would
only wish to view when a certain optimisation level
has been reached.

5 Working in Secure Distributed Envi-
ronments

Traditionally distributed computing protocols have
assumed that there are no barriers in the communica-
tion between components. In today’s internet, how-
ever, this is no longer true, as the presence of firewalls
provides one-way barriers to communication, and Net-
work Address Translation (NAT) removes even the
possibility of creating a connection to some hosts. In
the future the deployment of thing such as the Grid
Application Toolkit [13] (GAT), or implementations
of the Simple API for Grid Applications [34] (SAGA),
currently being developed by a research group within
the Global Grid Forum (GGF), will again make such
infrastructure transparent, as the specialised routing
will be hidden in these infrastructure components. To-
day, however, it is necessary to think carefully when
developing a distributed system, and design around
firewall issues.

Thus we developed a protocol where all communica-
tion is initiated by Cactus, which is the the component
which we have the least control of the deployment of,
and thus is most likely to be behind a firewall or NAT
barrier. Our protocol consists of three parts: notifi-
cation of the availability of a new file; querying, by
Cactus, of the Triana user’s desire to see any of these
files; and the sending of the files, or the changes in the
files.

6 SC2004 Demo and Current Imple-
mentation Status

In the SC2004 demonstration, we coded the Tri-
ana web-service unit to auto-detect JPEG files output
from the Cactus application and represent each one
as a separate output node on the unit, as shown in
Figure 2. This allows the user to connect cables from
these nodes to any of the other Triana units for fur-
ther analysis or visualisation. There are around 500
Triana units covering a broad range of applications
and here we took advantage of the image-processing
toolkit to visualise the JPEG files as show. However,
a user could reconnect these units during the running

the simulation in order to post-process or visualise in
a different manner.

Here, the three image windows show the output
in the three dimensions. This application is one of
the simplest examples of a solving a hyperbolic par-
tial differential equation using finite differences, and so
provides a very good learning example of how a PDE
can be solved within the Cactus framework. Despite
its simplicity, the WaveToy example is prototypical of
much more complicated systems of equations.

The complete scenario is illustrated in Figure 3.
Here, we can see the Cactus application instigating all
of the communication to the client-side visualisation
component, thereby avoiding NAT or firewall issues.
We also show here, the Cactus steering component,
which involves the use of a application-side HTTP
server that can be used to receive requests from an
off-the-shelf Web browser. Here, obviously there are
firewall issues but interestingly this outlines another
use of this underlying infrastructure: we imagine a
scenario in that users could monitor the application
using our protocol and then, based on this informa-
tion, steer the application accordingly. In this case,
our protocol would form part of a larger workflow for
generic steering. Within Cactus, this involves the use
of the Cactus HTTP server but we are currently dis-
cussing extensions that would allow application-driven
steering within the the same framework. This would
provide a NAT and firewall friendly mechanism to al-
low applications to be steered but would obviously re-
quire application-side interfaces, which could be inte-
grated from elsewhere [35], [13] or [34].

7 Future Work

This work lays the foundations necessary to develop
a powerful synergistic suite of Triana units and Cactus
thorns which enable the two frameworks to be used in
tandem to do high-end, collaborative science, and, in
general to speed up the day-to-day research activities
of scientists, by allowing Triana to be used as a glue
to connect together various simulation code (Cactus
in this first case) and analysis tools, such as Triana
units or external packages, e.g. scripts, visualisation
tools (OpenDX, Amira, IDL, AVS, ...), or other tools,
along with any preprocessing of data necessary to start
a simulation, for example mesh generation for CFD
applications, creation of parameter files, parallel mesh
distribution, etc. That is to build the infrastructure in
which existing industrial and scientific HPC workflows
can be realised within a graphical workflow environ-
ment.
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The only key requirement for the use of the protocol
described here is that the remote application outputs
files. This infrastructure can be extended therefore
to be applied to any application that a user might
want to interact with in this way. This is what we
have achieved in our recent extension to our subsys-
tem that implements this protocol. We have recently
written a application-side monitoring tool, which uses
the Cactus thorn implementation but rather than trig-
gering directly from the application, it detects when
files are output and triggers in this way instead. The
user specifies which directories it should monitor and
then it discovers files when they are created and noti-
fies the application accordingly.

Using these extensions, the application code does
not need to be modified or adhere to any support-
ing application-side protocol. The application is com-
pletely independent of the infrastructure and therefore
it should be applicable to many other legacy applica-
tions. We are currently in the process of testing other
scenarios with our new prototype and when stable,
releaser the framework as an open source effort.

As this protocol is independent of the specific tools,
Cactus and Triana in this instance, which we have
used in this implementation, modules could be devel-

oped for other workflow packages, such as SCIRun,
ICENI [36], or CCA based frameworks, implementing
this protocol and enhancing their ability to interact
with independently developed applications.

8 Conclusion

Scientists and engineers implicitly use workflows in
their day-to-day work, however these are often not for-
malised, or require manual execution of the individual
components. While there are tools which can make
these workflows more explicit and automate them,
they are only making slow in-roads into many sci-
entific communities; moreover these tools are rarely
Grid aware. In this paper we have presented a simple
scheme which allows existing simulation codes to be
easily integrated into workflows with little or no mod-
ification. By taking two widely deployed tools, Cactus
as the simulation tool and Triana as the workflow tool,
we have shown how this scheme may be utilised easily,
and laid the groundwork for allowing existing Cactus
users to make their workflows explicit and make use of
the analysis tools which are already available within
the Triana framework.
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